Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674719

ABSTRACT

Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.

2.
Article in English | MEDLINE | ID: mdl-38154666

ABSTRACT

BACKGROUND: Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE: We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS: Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor ß repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS: Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS: Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.

3.
Immun Inflamm Dis ; 11(11): e1056, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38018592

ABSTRACT

BACKGROUND: Auto-antibodies neutralizing the activity of type I interferons have been recently described in patients infected by SARS-CoV-2. They can be present even before the onset of the infection. Since type I interferons exert a dichotomous role in the pathogenesis of acute versus chronic HIV infection and auto-antibodies are often found in untreated and anti-retroviral treated HIV+ patients, we investigated whether auto-antibodies anti-type I interferons are present at high prevalence in those HIV+ patients with concomitant opportunistic infections (OIs). METHODS: The analysis of auto-antibodies against two types of type I interferons (IFN-α2 and IFN-ω) was performed using the ELISA test in 60 patients chronically infected by HIV who showed concomitant infections caused by mycobacterium tuberculosis or nontuberculosis mycobacterium or with active cytomegalovirus infections. Results were compared with those of 283 SARS-CoV-2 swab positive patients showing mild to severe pneumonia. A chi-square (χ2 ) test or the Wilcoxon-Mann-Whitney test were used to compare the HIV+ patient categorical or continuous variables, respectively. RESULTS: A high prevalence of auto-antibodies to type I interferons was found in middle-aged HIV-infected patients with concomitant OIs (11.6% vs. 5.3% in COVID-19 subjects; p < .05). No statistically differences were found for viro/immunological characteristics (CD4 and CD8 cell counts and viral load) between patients with and without type I interferons auto-antibodies. CONCLUSIONS: This study, which is the first searching auto-antibodies against type I interferons in HIV-infected patients, demonstrated that their prevalence was higher than that expected by the age of these patients. Furthermore, it indicated that these auto-antibodies are nonspecifically increased in critical SARS-CoV-2 infection but can be found also in other infections.


Subject(s)
COVID-19 , HIV Infections , Interferon Type I , Middle Aged , Humans , HIV Infections/complications , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/complications , SARS-CoV-2 , Antibodies
4.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
5.
J Neuroimmunol ; 382: 578170, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37579546

ABSTRACT

Thymic and bone marrow outputs were evaluated in 13 sequential samples of 68 multiple sclerosis patients who initiated alemtuzumab and were clinically followed for 48 months. Three months after alemtuzumab infusions, the levels of new T lymphocytes were significantly reduced, but progressively increased reaching the highest values at 36 months, indicating the remarkable capacity of thymic function recovery. Newly produced B cells exceeded baseline levels as early as 3 months after alemtuzumab initiation. Heterogeneous patterns of new T- and B-cell recovery were identified, but without associations with age, sex, previous therapies, development of secondary autoimmunity or infections, and disease re-emergence. Trial registration version 2.0-27/01/2016.


Subject(s)
Multiple Sclerosis , Humans , Alemtuzumab/therapeutic use , Multiple Sclerosis/drug therapy , Bone Marrow , Clinical Relevance , T-Lymphocytes
6.
Cancers (Basel) ; 15(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37370706

ABSTRACT

Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.

7.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: mdl-37243300

ABSTRACT

Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.


Subject(s)
Autoimmune Diseases , COVID-19 , Communicable Diseases , Interferon Type I , Humans , Autoantibodies , Interferons , Cytokines
8.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982868

ABSTRACT

It is well-established that the beneficial properties of single phytonutrients can be better attained when they are taken with the complex of the molecules present in their natural milieu. Tomato, the fruit providing the most comprehensive complex of prostate-health-preserving micronutrients, has been shown to be superior to its single-nutrient counterparts in decreasing the incidence of age-related prostate diseases. Herein, we describe a novel tomato food supplement enriched with olive polyphenols, containing cis-lycopene concentrations far exceeding those present in industry-produced tomato commodities. The supplement, endowed with antioxidant activity comparable to that of N-acetylcysteine, significantly reduced, in experimental animals, the blood levels of prostate-cancer-promoting cytokines. In prospective, randomized, double-blinded, placebo-controlled studies performed on patients affected by benign prostatic hyperplasia, its uptake significantly improved urinary symptoms and quality of life. Therefore, this supplement can complement and, in some cases, be an alternative to current benign prostatic hyperplasia management. Furthermore, the product suppressed carcinogenesis in the TRAMP mouse model of human prostate cancer and interfered with prostate cancer molecular signaling. Thus, it may offer a step forward in exploring the potential of tomato consumption to delay or prevent the onset of age-related prostate diseases in high-risk individuals.


Subject(s)
Prostatic Hyperplasia , Prostatic Neoplasms , Solanum lycopersicum , Male , Mice , Animals , Humans , Prostatic Hyperplasia/prevention & control , Prostate , Carotenoids , Prospective Studies , Quality of Life , Diet , Prostatic Neoplasms/prevention & control , Prostatic Neoplasms/epidemiology , Hypertrophy
9.
Nutr Health ; 29(2): 193-197, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36300197

ABSTRACT

BACKGROUND: Platelet dysfunctions are shared by cardiovascular diseases and a wide range of inflammatory diseases. AIMS: To determine the ability of a new whole tomato-based food supplement (WTBFS) containing carotenoid and olive polyphenols to inhibit platelet aggregation. METHODS: Aggregation was evaluated in platelet-rich plasma using microtiter plates and a plate reader. RESULTS: Platelets treated with WTBFS showed a >70% reduction of 5 µM adenosine diphosphate (ADP)-induced platelet aggregation; at 10 µM of ADP, the inhibitory effect of WTBFS was reduced of about 50%. Similarly, 78% and 48% reduction were obtained using 5 µg/mL and 10 µg /mL of collagen as an agonist. CONCLUSION: Since the compounds in WTBFS share the ability to inhibit STAT3, the inhibition of its signaling pathway may represent the mechanism underlying the antiplatelet activities. The activity of a lipophilic solution prepared from WTBS was in vitro tested on the platelet aggregation in response to ADP agonists and Collagen.


Subject(s)
Olea , Solanum lycopersicum , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/physiology , Collagen/pharmacology , Dietary Supplements , Nutrients , Adenosine Diphosphate/pharmacology
10.
Int J Biol Sci ; 18(15): 5591-5606, 2022.
Article in English | MEDLINE | ID: mdl-36263161

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic respiratory infectious disease COVID-19. However, clinical manifestations and outcomes differ significantly among COVID-19 patients, ranging from asymptomatic to extremely severe, and it remains unclear what drives these disparities. Here, we studied 159 sequentially enrolled hospitalized patients with COVID-19-associated pneumonia from Brescia, Italy using the VirScan phage-display method to characterize circulating antibodies binding to 96,179 viral peptides encoded by 1,276 strains of human viruses. SARS-CoV-2 infection was associated with a marked increase in immune antibody repertoires against many known pathogenic and non-pathogenic human viruses. This antiviral antibody response was linked to longitudinal trajectories of disease severity and was further confirmed in additional 125 COVID-19 patients from the same geographical region in Northern Italy. By applying a machine-learning-based strategy, a viral exposure signature predictive of COVID-19-related disease severity linked to patient survival was developed and validated. These results provide a basis for understanding the role of memory B-cell repertoire to viral epitopes in COVID-19-related symptoms and suggest that a unique anti-viral antibody repertoire signature may be useful to define COVID-19 clinical severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virome , Antiviral Agents , Epitopes
11.
Cell Syst ; 13(10): 808-816.e5, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36265467

ABSTRACT

Human immunoglobulin heavy chain (IGH) locus on chromosome 14 includes more than 40 functional copies of the variable gene (IGHV), which are critical for the structure of antibodies that identify and neutralize pathogenic invaders as a part of the adaptive immune system. Because of its highly repetitive sequence composition, the IGH locus has been particularly difficult to assemble or genotype when using standard short-read sequencing technologies. Here, we introduce ImmunoTyper-SR, an algorithmic tool for the genotyping and CNV analysis of the germline IGHV genes on Illumina whole-genome sequencing (WGS) data using a combinatorial optimization formulation that resolves ambiguous read mappings. We have validated ImmunoTyper-SR on 12 individuals, whose IGHV allele composition had been independently validated, as well as concordance between WGS replicates from nine individuals. We then applied ImmunoTyper-SR on 585 COVID patients to investigate the associations between IGHV alleles and anti-type I IFN autoantibodies, which were previously associated with COVID-19 severity.


Subject(s)
COVID-19 , Immunoglobulin Variable Region , Humans , Immunoglobulin Variable Region/genetics , Genotype , COVID-19/genetics , High-Throughput Nucleotide Sequencing , Immunoglobulin Heavy Chains/genetics , Autoantibodies/genetics
12.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35852866

ABSTRACT

Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease, including multisystem inflammatory syndrome in children (MIS-C) and chilblain-like lesions (CLLs), otherwise known as "COVID toes," remains unclear. Studying multinational cohorts, we found that, in CLLs, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity. MIS-C and CLL serum samples displayed decreased NET degradation ability, in association with C1q and G-actin or anti-NET antibodies, respectively, but not with genetic variants of DNases. In adult COVID-19, persistent elevations in NETs after disease diagnosis were detected but did not occur in asymptomatic infection. COVID-19-affected adults displayed significant prevalence of impaired NET degradation, in association with anti-DNase1L3, G-actin, and specific disease manifestations, but not with genetic variants of DNases. NETs were detected in many organs of adult patients who died from COVID-19 complications. Infection with the Omicron variant was associated with decreased NET levels when compared with other SARS-CoV-2 strains. These data support a role for NETs in the pathogenesis and severity of COVID-19 in pediatric and adult patients.


Subject(s)
COVID-19 , Extracellular Traps , Actins/metabolism , Adult , COVID-19/complications , Child , Deoxyribonuclease I , Humans , Neutrophils , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
14.
PNAS Nexus ; 1(3): pgac062, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35865361

ABSTRACT

Our immune system is critical for preventing and treating SARS-CoV-2 infections, but aberrant immune responses can have deleterious effects. While antibodies to glycans could recognize the virus and influence the clinical outcome, little is known about their roles. Using a carbohydrate antigen microarray, we profiled serum antibodies in healthy control subjects and COVID-19 patients from two separate cohorts. COVID-19 patients had numerous autoantibodies to self-glycans, including antiganglioside antibodies that can cause neurological disorders. Additionally, nearly all antiglycan IgM signals were lower in COVID-19 patients, indicating a global dysregulation of this class of antibodies. Autoantibodies to certain N-linked glycans correlated with more severe disease, as did low levels of antibodies to the Forssman antigen and ovalbumin. Collectively, this study indicates that expanded testing for antiglycan antibodies could be beneficial for clinical analysis of COVID-19 patients and illustrates the importance of including host and viral carbohydrate antigens when studying immune responses to viruses.

15.
Proc Natl Acad Sci U S A ; 119(21): e2200413119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35576468

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.


Subject(s)
Antibodies, Neutralizing , Autoantibodies , Autoimmunity , COVID-19 , Interferon Type I , SARS-CoV-2 , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , COVID-19/mortality , Female , Humans , Interferon Type I/immunology , Male , Middle Aged , Risk
16.
Front Immunol ; 13: 841126, 2022.
Article in English | MEDLINE | ID: mdl-35360001

ABSTRACT

The antibody profile against autoantigens previously associated with autoimmune diseases and other human proteins in patients with COVID-19 or multisystem inflammatory syndrome in children (MIS-C) remains poorly defined. Here we show that 30% of adults with COVID-19 had autoantibodies against the lung antigen KCNRG, and 34% had antibodies to the SLE-associated Smith-D3 protein. Children with COVID-19 rarely had autoantibodies; one of 59 children had GAD65 autoantibodies associated with acute onset of insulin-dependent diabetes. While autoantibodies associated with SLE/Sjögren's syndrome (Ro52, Ro60, and La) and/or autoimmune gastritis (gastric ATPase) were detected in 74% (40/54) of MIS-C patients, further analysis of these patients and of children with Kawasaki disease (KD), showed that the administration of intravenous immunoglobulin (IVIG) was largely responsible for detection of these autoantibodies in both groups of patients. Monitoring in vivo decay of the autoantibodies in MIS-C children showed that the IVIG-derived Ro52, Ro60, and La autoantibodies declined to undetectable levels by 45-60 days, but gastric ATPase autoantibodies declined more slowly requiring >100 days until undetectable. Further testing of IgG and/or IgA antibodies against a subset of potential targets identified by published autoantigen array studies of MIS-C failed to detect autoantibodies against most (16/18) of these proteins in patients with MIS-C who had not received IVIG. However, Troponin C2 and KLHL12 autoantibodies were detected in 2 of 20 and 1 of 20 patients with MIS-C, respectively. Overall, these results suggest that IVIG therapy may be a confounding factor in autoantibody measurements in MIS-C and that antibodies against antigens associated with autoimmune diseases or other human proteins are uncommon in MIS-C.


Subject(s)
Autoimmune Diseases , COVID-19 , Lupus Erythematosus, Systemic , Adaptor Proteins, Signal Transducing , Adenosine Triphosphatases , Adult , Autoantibodies , Autoantigens , Autoimmunity , COVID-19/complications , Child , Humans , Immunoglobulins, Intravenous , Ribonucleoproteins , Systemic Inflammatory Response Syndrome
17.
Am J Med Genet A ; 188(7): 2129-2134, 2022 07.
Article in English | MEDLINE | ID: mdl-35266289

ABSTRACT

The Rubinstein-Taybi syndrome (RSTS) is a rare developmental disorder characterized by craniofacial dysmorphisms, broad thumbs and toes, intellectual disability, growth deficiency, and recurrent infections. Mutations in the cyclic adenosine monophosphate response element-binding protein (CREB)-binding protein (CREBBP) or in the E1A-associated protein p300 (EP300) genes have been demonstrated in 55% (RSTS1) and up to 8% of the patients (RSTS2), respectively. Dysfunction of immune response has been reported in a subgroup of individuals with RSTS. Here we characterize two patients carrying the same EP300 variant and distinctive RSTS features (including congenital heart abnormalities, short stature, feeding problems, and gastroesophageal reflux). Whole exome sequencing did not support a dual molecular diagnosis hypothesis. Nonetheless, patients showed distinct clinical manifestations and immunological features. The most severe phenotype was associated with reduced T-cell production and diversity. This latter feature was confirmed in a control group of four RSTS patients.


Subject(s)
Dwarfism , Rubinstein-Taybi Syndrome , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Genetic Association Studies , Humans , Mutation , Phenotype , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/genetics
18.
Ann Clin Transl Neurol ; 9(5): 622-632, 2022 05.
Article in English | MEDLINE | ID: mdl-35313387

ABSTRACT

OBJECTIVE: Given the continued spread of coronavirus 2, the early predictors of coronavirus disease 19 (COVID-19) associated mortality might improve patients' outcomes. Increased levels of circulating neurofilament light chain (NfL), a biomarker of neuronal injury, have been observed in severe COVID-19 patients. We investigated whether NfL provides non-redundant clinical value to previously identified predictors of COVID-19 mortality. METHODS: We measured serum or plasma NfL concentrations in a blinded fashion in 3 cohorts totaling 338 COVID-19 patients. RESULTS: In cohort 1, we found significantly elevated NfL levels only in critically ill COVID-19 patients. Longitudinal cohort 2 data showed that NfL is elevated late in the course of the disease, following the two other prognostic markers of COVID-19: decrease in absolute lymphocyte count (ALC) and increase in lactate dehydrogenase (LDH). Significant correlations between ALC and LDH abnormalities and subsequent rise of NfL implicate that the multi-organ failure is the most likely cause of neuronal injury in severe COVID-19 patients. The addition of NfL to age and gender in cohort 1 significantly improved the accuracy of mortality prediction and these improvements were validated in cohorts 2 and 3. INTERPRETATION: A substantial increase in serum/plasma NfL reproducibly enhanced COVID-19 mortality prediction. Combined with other prognostic markers, such as ALC and LDH that are routinely measured in ICU patients, NfL measurements might be useful to identify the patients at a high risk of COVID-19-associated mortality, who might still benefit from escalated care.


Subject(s)
COVID-19 , Biomarkers , Cohort Studies , Humans , Intermediate Filaments , Prognosis
19.
medRxiv ; 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35262093

ABSTRACT

Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease including MIS-C and chilblain-like lesions (CLL), otherwise known as "COVID toes", remains unclear. Studying multinational cohorts, we found that, in CLL, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity. MIS-C and CLL serum samples displayed decreased NET degradation ability, in association with C1q and G-actin or anti-NET antibodies, respectively, but not with genetic variants of DNases. In adult COVID-19, persistent elevations in NETs post-disease diagnosis were detected but did not occur in asymptomatic infection. COVID-19-affected adults displayed significant prevalence of impaired NET degradation, in association with anti-DNase1L3, G-actin, and specific disease manifestations, but not with genetic variants of DNases. NETs were detected in many organs of adult patients who died from COVID-19 complications. Infection with the Omicron variant was associated with decreased levels of NETs when compared to other SARS-CoV-2 strains. These data support a role for NETs in the pathogenesis and severity of COVID-19 in pediatric and adult patients. Summary: NET formation and degradation are dysregulated in pediatric and symptomatic adult patients with various complications of COVID-19, in association with disease severity. NET degradation impairments are multifactorial and associated with natural inhibitors of DNase 1, G-actin and anti-DNase1L3 and anti-NET antibodies. Infection with the Omicron variant is associated with decreased levels of NETs when compared to other SARS-CoV-2 strains.

20.
Nat Med ; 28(5): 1050-1062, 2022 05.
Article in English | MEDLINE | ID: mdl-35177862

ABSTRACT

Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/genetics , Child , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/genetics , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...